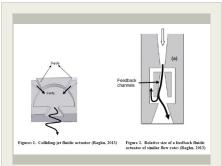
Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I

Completed Technology Project (2016 - 2016)


Project Introduction

We propose a novel method of producing sweeping jets using a simplified geometry that is very short in stream-wise length and no feedback channels inside. This rugged design is expected to be more efficient, occupies about 50% less space (and hence less weight) when scaled-up compared to the existing feedback-oscillator-based actuators and hence offers advantages in developing a flow control system that can be more suitable for integration into aerodynamic configurations. In Phase I, we propose to optimize the geometry for stable operation with high momentum output, and minimum streamwise length. Scaling studies will be conducted for the best design to obtain scaling laws for scale-up to full-scale. We will also develop concepts of actuator arrays with integrated plenum chamber. In Phase II, we plan to demonstrate the use of these actuators for flow control in a blended wing or on a thin airfoil flap.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Advanced Fluidics, LLC	Lead Organization	Industry Small Disadvantaged Business (SDB)	Ellicott City, Maryland
● Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I

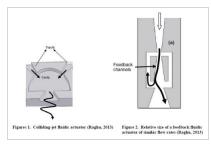
Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
Maryland	Virginia	

Project Transitions

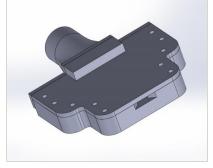
0

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/139725)

Images

Briefing Chart Image

Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I (https://techport.nasa.gov/imag e/136150)

Final Summary Chart Image

Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I Project Image

(https://techport.nasa.gov/image/135399)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Advanced Fluidics, LLC

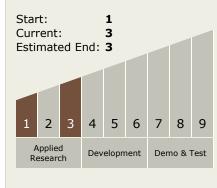
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Surya Raghu

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Colliding-Jet Fluidic Actuators for Active Flow Control, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX15 Flight Vehicle Systems
 □ TX15.1 Aerosciences
 □ TX15.1.5 Propulsion
 Flowpath and
 Interactions
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

